88147209

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Thursday 13 November 2014 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]

A group with the binary operation of multiplication modulo 15 is shown in the following Cayley table.

\times_{15}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{1 4}$
$\mathbf{1}$	1	2	4	7	8	11	13	14
$\mathbf{2}$	2	4	8	14	1	7	11	13
$\mathbf{4}$	4	8	1	13	2	14	7	11
$\mathbf{7}$	7	14	13	4	11	2	1	8
$\mathbf{8}$	8	1	2	11	4	13	14	7
$\mathbf{1 1}$	11	7	14	2	13	a	b	c
$\mathbf{1 3}$	13	11	7	1	14	d	e	f
$\mathbf{1 4}$	14	13	11	8	7	g	h	i

(a) Find the values represented by each of the letters in the table.
(b) Find the order of each of the elements of the group.
(c) Write down the three sets that form subgroups of order 2 .
(d) Find the three sets that form subgroups of order 4.
2. [Maximum mark: 8]

Define $f: \mathbb{R} \backslash\{0.5\} \rightarrow \mathbb{R}$ by $f(x)=\frac{4 x+1}{2 x-1}$.
(a) Prove that f is an injection. [4]
(b) Prove that f is not a surjection.
3. [Maximum mark: 11]

Consider the set A consisting of all the permutations of the integers $1,2,3,4,5$.
(a) Two members of A are given by $p=(125)$ and $q=(13)(25)$. Find the single permutation which is equivalent to $q \circ p$.
(b) State a permutation belonging to A of order
(i) 4 ;
(ii) 6 .
(c) Let $P=$ \{all permutations in A where exactly two integers change position $\}$, and $Q=\{$ all permutations in A where the integer 1 changes position $\}$.
(i) List all the elements in $P \cap Q$.
(ii) Find $n\left(P \cap Q^{\prime}\right)$.
4. [Maximum mark: 10]

The group $\{G, *\}$ has identity e_{G} and the group $\{H, \circ\}$ has identity e_{H}. A homomorphism f is such that $f: G \rightarrow H$. It is given that $f\left(e_{G}\right)=e_{H}$.
(a) Prove that for all $a \in G, f\left(a^{-1}\right)=(f(a))^{-1}$.

Let $\{H, \circ\}$ be the cyclic group of order seven, and let p be a generator.
Let $x \in G$ such that $f(x)=p^{2}$.
(b) Find $f\left(x^{-1}\right)$.
(c) Given that $f(x * y)=p$, find $f(y)$.
5. [Maximum mark: 19]
(a) State Lagrange's theorem.
$\{G, *\}$ is a group with identity element e. Let $a, b \in G$.
(b) Verify that the inverse of $a * b^{-1}$ is equal to $b * a^{-1}$.

Let $\{H, *\}$ be a subgroup of $\{G, *\}$. Let R be a relation defined on G by

$$
a R b \Leftrightarrow a * b^{-1} \in H .
$$

(c) Prove that R is an equivalence relation, indicating clearly whenever you are using one of the four properties required of a group.
(d) Show that $a R b \Leftrightarrow a \in H b$, where $H b$ is the right coset of H containing b.

It is given that the number of elements in any right coset of H is equal to the order of H.
(e) Explain how this fact together with parts (c) and (d) prove Lagrange's theorem.

