

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Thursday 13 November 2014 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics HL* formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

[4]

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]

A group with the binary operation of multiplication modulo 15 is shown in the following Cayley table.

× ₁₅	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	а	b	С
13	13	11	7	1	14	d	e	f
14	14	13	11	8	7	g	h	i

(a) Find the values represented by each of the letters in the table. [3]
 (b) Find the order of each of the elements of the group. [3]
 (c) Write down the three sets that form subgroups of order 2. [2]

Find the three sets that form subgroups of order 4.

(d)

2. [Maximum mark: 8]

Define $f: \mathbb{R} \setminus \{0.5\} \to \mathbb{R}$ by $f(x) = \frac{4x+1}{2x-1}$.

- (a) Prove that f is an injection. [4]
- (b) Prove that f is not a surjection. [4]

3. [Maximum mark: 11]

Consider the set A consisting of all the permutations of the integers 1, 2, 3, 4, 5.

- (a) Two members of A are given by $p = (1 \ 2 \ 5)$ and $q = (1 \ 3)(2 \ 5)$. Find the single permutation which is equivalent to $q \circ p$.
- (b) State a permutation belonging to A of order
 - (i) 4;
 - (ii) 6. [3]
- (c) Let $P = \{\text{all permutations in } A \text{ where exactly two integers change position} \}$, and $Q = \{\text{all permutations in } A \text{ where the integer 1 changes position} \}$.
 - (i) List all the elements in $P \cap Q$.
 - (ii) Find $n(P \cap Q')$. [4]

8814-7209

The group $\{G,*\}$ has identity e_G and the group $\{H,\circ\}$ has identity e_H . A homomorphism f is such that $f:G\to H$. It is given that $f(e_G)=e_H$.

-4-

(a) Prove that for all
$$a \in G$$
, $f(a^{-1}) = (f(a))^{-1}$. [4]

Let $\{H, \circ\}$ be the cyclic group of order seven, and let p be a generator. Let $x \in G$ such that $f(x) = p^2$.

(b) Find
$$f(x^{-1})$$
. [2]

(c) Given that
$$f(x*y) = p$$
, find $f(y)$. [4]

- **5.** [Maximum mark: 19]
 - (a) State Lagrange's theorem. [2]

 $\{G, *\}$ is a group with identity element e. Let $a, b \in G$.

(b) Verify that the inverse of
$$a*b^{-1}$$
 is equal to $b*a^{-1}$. [3]

Let $\{H, *\}$ be a subgroup of $\{G, *\}$. Let R be a relation defined on G by

$$aRb \Leftrightarrow a*b^{-1} \in H$$
.

- (c) Prove that *R* is an equivalence relation, indicating clearly whenever you are using one of the four properties required of a group. [8]
- (d) Show that $aRb \Leftrightarrow a \in Hb$, where Hb is the right coset of H containing b. [3]

It is given that the number of elements in any right coset of H is equal to the order of H.

(e) Explain how this fact together with parts (c) and (d) prove Lagrange's theorem. [3]